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Highlights
Horizontal gene transfer (HGT) is
emerging as a significant contributor to
eukaryotic genomes, challenging pre-
vious assertions that HGT is restricted
to prokaryotes and only relevant to
eukaryotes during organellogenesis.

HGTs often confer an adaptive advan-
tage to the ‘host’ organism, and many
of these adaptations significantly en-
hance metabolic pathways, leading
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Horizontal gene transfer (HGT), the movement of genetic material across branches
of the tree of life, is well established in prokaryotes and uncontroversial. This is
explained in part by relatively compact prokaryote genomes that facilitate assembly
and gene prediction, resulting in thousands of complete genomes for analysis.
By contrast, their large and often complex genome structure have thwarted HGT
studies of eukaryotes. The tide has recently turned with the availability of sufficient
high-quality genome data to address quantity and quality of HGT in these taxa.
Here, we argue that HGT is a small but significant player in the evolution ofmicrobial
eukaryotes and provide examples where HGT has facilitated gain of adaptive func-
tions and in some cases, underpinned major lifestyle transitions.
to lifestyle shifts or survival in highly fluc-
tuating environments.

Protists that exhibit a range of lifestyles,
including photosynthesis, mixotrophy,
polyextremophily, and parasitism, com-
prise the earliest divergences in major
multicellular lineages, making them
models for understanding the role of
HGT in evolutionary transitions.

HGT represents, on average, about 1%
of protist gene inventories, although this
‘rule’ needs to be tested in the future
using more data and a standardized
pipeline for HGT quantification.
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Horizontal Gene Transfer in Eukaryotes and Prokaryotes
Horizontal gene transfer (HGT) (see Glossary) is the nonlineal movement of genetic material
across the web of life that creates reticulate gene phylogenies. This process is of high interest be-
cause it can drive functional innovation through the introduction of novel genes and pathways [1].
HGT is a common occurrence across all domains of life; however, most transfers are ephemeral
and not transmitted to the next generation. For example, they may be introduced into somatic
tissue in a multicellular organism and lost after that generation, or, if integrated into the germline
or acquired in a unicellular organism, they do not become fixed within the population (e.g., they
are weeded out by natural selection and/or drift) [2]. HGT is well studied in prokaryotes, and
extensive or open pangenomes have resulted in ambiguous species definitions and problematic
phylogenetic reconstruction [3]. Genes are readily exchanged between different bacterial and
archaeal cells, either picked up from the environment or transferred by vectors such as viruses,
plasmids, and gene transfer agents (GTAs). Due to the unicellular and asexual nature of
these cells, once a new gene integrates into the genome, it can be propagated throughout the
population. Many studies of prokaryote gene sharing have been published, showing varying
degrees of HGT across different taxa [4–7]. In organisms such as Escherichia coli that have
particularly extensive pangenomes, up to 80% of genes may be the product of horizontal transfer
at some point in the organism’s evolutionary history [4,5]. By contrast, HGT in eukaryotes is much
rarer, and its extent and role in adaptive evolution are the focus of many recent studies, including
some that are actively debated [8–12].

HGT in Microbial Eukaryotes
Most microbial eukaryotes (protists and some fungi) are unicellular, predominantly asexual, and
represent a taxonomically diverse assortment of organisms and lifestyles whose members com-
prise the earliest divergences within all major multicellular lineages, such as animals, plants, and
seaweeds [13]. Protist and algal clades include a number of other major evolutionary transitions,
such as from free-living to pathogenic (e.g., oomycetes [14]), mesophilic to extremophilic (ice
algae [15]), and marine to freshwater habitats (and vice versa; green algae [16]) that may have
been facilitated by HGT. Many microbial eukaryote genomes have recently become publicly
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Glossary
CRASH: an informal phylogenetic
grouping [1] that includes a diverse
collection of photosynthetic and
nonphotosynthetic organisms from the
following lineages: Cryptophyta,
Rhizaria, Alveolata, Stramenopila, and
Haptophyta.
Dark genes: genes that are either novel
to science, that is, they do not share
significant sequence identity with
proteins in large databases such as the
manually curated UniProt, or are too
highly diverged to allow identification of
putative homologs. These genes may
confer functions that differentiate
lineages of eukaryotes and prokaryotes.
Gene transfer agents (GTAs): DNA-
containing virus-like particles produced
by prokaryotes (bacteria and archaea)
that mediate the horizontal gene transfer
of approximately 4–5-kbp fragments of
DNA between different cells.
Horizontal gene transfer (HGT): also
called ‘lateral gene transfer’ (LGT), is the
acquisition of genetic material by the
genome of one organism from the
genome of another that is not derived
from vertical inheritance. HGT can
involve the movement of genetic material
between similar organisms or across
domains of life and can result in reticulate
evolution and functional innovation.
Muller’s ratchet: the process by which
a genome irreversibly accumulates
deleterious mutations. This occurs most
often in asexual organisms due to the
lack of sexual recombination. Muller’s
ratchet is also a crucial process in
organelle evolution whereby the
captured endosymbionts no longer
freely exchange genes with other
organisms and subsequently undergo
massive gene loss and genome
reduction.
Pangenome: the set of all genes
present across all individuals of a
particular species; it includes both the
‘core’ genes found in all members of the
species and ‘accessory’ genes, which
are restricted to a subset of species.
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available, leading to dozens of studies of HGT and novel gene origin (Box 1) and their role in
underpinning novel adaptation in eukaryotes.

Among phytoplankton, HGTs comprise a small but important component of the gene inventory
and either serve as replacements for genes with similar functionalities or encode novel functions,
some of which have allowed organisms to inhabit new environments, including those considered
extreme [17,18]. One such example is in the Cyanidiophyceae, a class within the largely mesophilic
red algae (Rhodophyta) that contains various genera, species, and strains of unicellular algae with
polyextremophilic lifestyles. These specialized eukaryotes have transitioned to extreme hot spring
environments in part due to an array of HGTs that were likely acquired from resident extremophilic
prokaryotes [18–20]. A recent study that analyzed 13 genomes proposed that HGTs make up
approximately 1% of each cyanidiophycean gene inventory, an observation referred to as the
‘1% rule’ [20]. Another study focused on amore taxonomically diverse suite of mesophilic organisms
and reported similar findings of 0.16–1.44% HGT across 23 phytoplankton genomes found within
cryptophyte, rhizarian, alveolate, stramenopile, and haptophyte (CRASH) lineages [1]. In this opinion
article, we discuss the amount and function of HGTs (primarily of prokaryote provenance) that have
been characterized in organisms across different lifestyles and niches, what this means for HGT as
a fundamental force of eukaryotic evolution, and areas of future research.

Examples of HGT Driving Adaptive Evolution in Microbial Eukaryotes
With significantly more protist, algal, and yeast genomic data and associated studies available, it
is possible to investigate robustly supported instances of HGT (Figure 1) to assess if they are
adaptive gains associated with environmental shifts and, in some cases, to explore how HGT
happens (Box 2). Here, we explore these cases and identify trends in terms of gain of function,
recognizing that most HGTs are destined for loss and, in some cases, when neutral or nearly
neutral, may later become adaptive [21] (Figure 2).

Extremophiles
The most striking example of HGTs providing adaptive functions are found in organisms that
occupy a new niche, particularly one in which its closest phylogenetic relatives could not survive.
In polar climates, ice-binding proteins (IBPs) from prokaryotic donors have been identified and
experimentally validated numerous times across disparate protist lineages. In general, IBPs func-
tion to modify the external environment to reduce the potential for freezing injury and water loss in
cells [22]. Examples include a study of sea ice diatoms, a prymnesiophyte (Phaeocystis antarctica),
and a prasinophyte (Pyraminonas gelidicola) in which the phylogenetic relationships resolved in
single-gene trees for IBPs conflict with the expected species relationships based on analysis of
18S rDNA [22]. In addition, IBPs share significant sequence similarity with prokaryotes, including
those that exhibit ice-binding activity [22]. Similar findings have been found with Chlamydomonas
sp. IBPs [23] and links between an ice-specialized bacterial donor (Psychroflexus torquis) and other
activities that aid in survival in icy environments, such as synthesis of polyunsaturated fatty acids
[24]. Although closely related to the Chlamydomonas lineage, IBPs of the snow algaChloromonas
Tripartite model: The tripartite model
of plastid origin postulates that plastid
endosymbiosis in the Archaeplastida
ancestor involved three partners – the
eukaryotic host cell, the cyanobacterial
endosymbiont, and a chlamydial
pathogen – that facilitated metabolic
integration of the novel photosynthetic
organelle.

Box 1. Novel Gene Origination

Traditionally, gene and genome duplication followed by divergence were considered to be the main drivers of eukaryote
evolution. However, recent studies across many different systems have shown that exon shuffling, origin of novel genes
from previously noncoding regions, transposon-mediated recombination, gene fusions resulting in promoter capture,
and other processes are also important mechanisms of generating genetic novelty [2,98,99]. What is largely missing from
these studies is the role of horizontal gene transfer (HGT) in gene origin, particularly in non-model eukaryotes
(i.e., excluding classic model systems such as Drosophila, many plants, and bacteria). Microbial eukaryotes
(i.e., protists and algae), with their thousands of novel or ‘dark’ genes (e.g., [100]) that are new to science, are ideal models
for studying the mechanisms of gene origin, particularly through HGT.
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Box 2. Horizontal Gene Transfer (HGT) and Experimental Evolution

Due to their small genome size and rapid doubling time, most experimental evolution (EE) studies have been carried out on
prokaryotes, with a small subset focusing on HGT [101,102]. In eukaryotes, EE studies dealing with HGT are also sparse,
but a few notable examples exist. Grafting experiments in plants have shown that plastids can traverse grafting sites and
be incorporated into the cells of a non-interbreeding species [103]. A similar pattern was seen in plant grafting experiments
that focus onmitochondria, however parts, and not the whole mitochondrial genome, were transferred [104]. Interestingly,
various red algae have plasmids that are capable of transferring foreign DNA into the genomes of plastids, mitochondria,
and the nucleus of other eukaryotes [105]. Moreover, it has recently been shown that plasmids from bacteria can replicate
in the nucleus of the red algae Porphyridium purpureum [106]. These genetic elements can be used as a transformation
system in this alga. P. purpureum expresses plasmid genes at high levels, but instead of incorporating the plasmid DNA
into algal chromosomes, they are maintained episomally in high copy numbers that replicate using the bacterial machinery
[106]. It is intriguing that so many plasmids reside in the nucleus of P. purpureum and that the nuclear genome of this
species contains many horizontally acquired genes [83]. However, direct evidence of plasmids as mediators of HGT in
red algae has not yet been reported.

Trends in Genetics
brevispina are more closely related to bacterial sequences than to Chlamydomonas, suggesting
that both chlorophyte groups acquired IBPs, and thus psychrophilic traits, independently from a
prokaryotic source [25]. Comparable findings exist for the Antarctic ciliate Euplotes focardii [26]
and the dinoflagellate Polarella glacialis [27].

On the other end of extremes is high temperature, for which HGTs have been implicated in the evo-
lution of thermophily [18,20]. Themost prominent example is theCyanidiophyceae, including the gen-
era Galdieria and Cyanidioschyzon that split about 1 billion years ago and have maintained a
thermophilic lifestyle [28]. The common ancestor of all Rhodophyta may also have been an
extremophile because of its highly reduced predicted gene inventory and the presence of
bacterium-derived HGTs with functions related to withstanding salinity and other stresses [28]. Fossil
evidence suggests that mesophilic red algae are at least 1.2 billion years old [29,30]; therefore, the
ancient split of Cyanidiophyceae and other red algae, supported by many studies [20,31,32], pre-
dates this time point. HGTs associated with the transition to high temperature stress in
Cyanidiophyceae include an Hsp20 homolog and thermostable enzymes such as α-xylosidase that
is present in all sequencedGaldieria strains and species, as well as proteins that mitigate free radicals
that result from the higher metabolic rates due to high temperature [20]. Other examples include
thioredoxin oxidoreductase and a putative glutathione-specific γ-glutamylcyclotransferase 2 found
in both genera, multiple peroxidase-related enzymes in Galdieria, and a cytosolic and/or extracellular
peroxiredoxin-6 inCyanidioschyzon [20]. Species in the genusGaldieria are farmore versatile in terms
of habitats than Cyanidioschyzon, with Galdieria sulphuraria (nine diverged strains sequenced) and
Galdieria phlegrea (two closely related strains sequenced) able to thrive in conditions ranging from
hot springs to acid mining sites characterized by pH approaching 0, high-salt environments, and wa-
ters or sediments rich in arsenic and mercury [33]. G. phlegrea is adapted to dry habitats near fuma-
roles such as fissures between rocks or cryptoendolithic environments [19]. Analysis of Galdieria
genomes identified HGTs related to all of these traits that function in metal and xenobiotic resis-
tance/detoxification, carbonmetabolism, amino acidmetabolism, one-carbonmetabolism andmeth-
ylation, urea uptake and utilization, and osmotic resistance and salt tolerance [19,20]. Galdieria
species are facultative heterotrophs, able to discontinue photosynthesis and feed on a multitude of
Figure 1. A Schematic Phylogenetic Tree Showing Traits Associated with Horizontal Gene Transfer (HGT) in
Protists and Algae. This tree includes data from species with completed nuclear genomes that explicitly quantified HGT
The tree topology is based on [82], and within-clade branching order is based on the National Center for Biotechnology
Information taxonomy. Under ‘methodology,’ viruses were excluded because some papers specifically searched for HGTs
from viruses and some did not, but many did not specify. Note that the branch that contains 23 cryptophyte, rhizarian
alveolate, stramenopile, and haptophyte (CRASH) genomes in the tree represents polyphyletic taxa that individually would
appear at different places within this phylogeny. Because these data are from one large study that groups them together
we included them as a single, independent branch solely for the sake of simplicity. ‘Features’ icons were created with
BioRender.com. See [1,20,34,39–42,45,46,48–54,65,83–96].
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Figure 2. Functions of Horizontal Gene Transfer (HGT)-Derived Genes in Different Algae and Protists Shown in a Single Idealized Cell Image. Schematic
image highlighting some major eukaryotic cell pathways impacted by HGT. These gene acquisitions play key roles in protist and algal transitions to different environments.
All dark colors indicate putative HGTs, whereas muted colors indicate native pathway components. The figure was created with BioRender.com. Top right quadrant:
Parasitism. (i) Nutrient absorption of host tissue: this pathway is adapted from [54] and shows how oomycetes are able to use both extracellular and intracellular
enzymes derived via HGT to break down plant polysaccharides into molecules compatible with their own energy-generating mechanisms. The numbers in the protein
boxes correspond to numbered HGTs from [54]. (ii) Pathogenicity. this pathway is adapted from [49] and shows the α-glucosylation of cholesterol, which leads to host
immune response evasion by Blastocystis sp. Bottom right quadrant: plant colonization of land. This region shows two metabolic pathways with HGT-derived enzymes
that enabled plants to colonize land. (iii) Salt/drought/osmotic stress adaptation. This pathway is adapted from data in [67] implicating the PYR/PYL protein (a putative
HGT) as a possible contributor to plant terrestrialization and the corresponding KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway in Arabidopsis thaliana,
which places this protein in a pathway related to stress adaptation. (iv) Secondary metabolism. This pathway is adapted from [97], where PAL is implicated as an HGT-
derived enzyme that was acquired in the land plant ancestor and plays a role in phenylpropanoid metabolism. Bottom left quadrant: metabolism in mesophiles. This
region shows two metabolic pathways with HGT-derived adaptations in mesophiles. (v) Lipid synthesis/energy storage. This pathway is adapted from [41] and shows
the fatty acid synthesis pathway in Nannochloropsis oceanica IMET1. (vi) Antioxidant activity. Adapted from [40], this pathway shows the function of heme peroxidase.
This HGT-derived gene in the Ulva mutabilis genome has undergone repeated duplications. Top left quadrant: extremophily. This region shows multiple metabolic
pathways related to survival in extreme environments. (vii) Mercury and arsenic detoxification. These pathways are from [20] and show HGT-derived enzymes in the
Galdieria lineage for the detoxification of Hg and As. (viii) Thermostability and heterotrophy. Also taken from [20], from left to right shows β-galactosidase activity,
thermostable α-xylosidase activity, and a glycerol transporter, all pathways related to carbon metabolism. Abbreviations: ACCase, acetyl-CoA carboxylase; Acyl-ACP
TE, Acyl-acyl-carrier-protein thioesterase; ENR, Enoyl-acyl-carrier-protein reductase; HAD, Hydroxyacyl-acyl-carrier-protein dehydrase; KAR, Ketoacyl-acyl-carrier-
protein reductase; KAS, Beta-ketoacyl-acyl-carrier-protein synthase; MAPKKK18, mitogen-activated protein kinase kinase kinase 17/18; MCAT, malonyl-CoA-acyl
carrier protein transacylase; MKK3, mitogen-activated protein kinase kinase 3; MPK1, mitogen-activated protein kinase 1; PP2C protein phosphatase 2C; SnRK2,
serine/threonine-protein kinase SRK2.
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carbon sources, an ability that can be linked to many HGTs found to function in carbon metabolism
[20,33]. Similarly, analysis of the green alga Picochlorum SE3 identified HGTs with potential
roles in tolerance to fluctuating salinity and light conditions in its estuarine habitat, including
enhancement of carbohydrate metabolism and cell surface modification [34]. HGTs have
also been associated with increased salt tolerance in heterotrophic protists, such as the
stramenopile Halocafeteria seosinensis, in which horizontally acquired peroxidase and
NADPH-dependent alcohol dehydrogenase–encoding genes have been identified that both
show higher expression under salt stress [35].

Mesophiles
HGTs with potential adaptive functions are easier to discern in extremophiles that often contain small
genomes with reduced and specialized gene inventories. However, most microbial eukaryotes are
not extremophiles but must nonetheless deal with stressful and changing environments. Can HGTs
be attributed to adaptive functions in these latter taxa? Past work suggests that genes encodingmet-
abolic enzymes are good candidates for HGT because they may provide novelty by enhancing met-
abolic networks already present in recipient organisms [36]. In addition, adding an enzyme to an
existing pathway likely increases the chance of successful gene integration into a new genome
[37]. If the HGT increases fitness (even marginally), then this gene may undergo duplication to exploit
the benefit [38]. Recent work on eukaryotic HGTs supports this idea. Some examples include the
green algaBathycoccus prasinos, where about 50%of all putative HGTs encodemetabolic functions
[39]. In another chlorophyte, the sea lettuce Ulva mutabilis, one-half of the HGTs are involved in gene
family expansion, with one candidate encoding a heme peroxidase from a single HGT event, giving
rise to 36 copies in the genome [40]. By scavenging H2O2, this enzyme confers a clear adaptive ad-
vantage in dealing with stressors in the intertidal habitat occupied byU. mutabilis, including high light,
salinity fluctuations, and dehydration [40]. In Nannochloropsis oceanica, a marine single-celled
stramenopile, most of the HGTs function in metabolic processes, and HGT-derived genes involved
in lipid biosynthesis are implicated in oleaginousness and thus energy storage, making this organism
a promising candidate for biofuel production [41]. In other stramenopiles such as the marine diatom
Phaeodactylum tricornutum, HGTs encode novel metabolic functions such as organic carbon and ni-
trogen utilization, enzymes of the diatom urea cycle, and enzymes involved in cell wall silification, all of
which putatively enhance fitness [42]. Other diatoms such as Pseudo-nitzschia and Fragilariopsis
species are able to sequester iron with ferritin, whose encoding gene was horizontally acquired
from bacteria, allowing them to bloom in iron-limited waters, a trait absent in most other diatoms
[43]. The trend of HGTs encoding metabolic enzymes is also apparent in phagotrophs such as
Dictyostelium discoideum, an amoeboid slime mold [44], and in the choanoflagellate Monosiga
brevicollis [45]. In M. brevicollis, over one-half of the identified HGTs lack annotations (i.e., are dark
genes; Box 1); however, thosewith known functions often encode enzymes involved in carbohydrate
metabolism, which likely enhances the ability of the organism to digest diverse food sources [45].
Last, in yeasts, non-protistan microbial eukaryotes, HGT has been studied across 332 genomes
that together represent a level of diversity consistent with the plant and metazoan clades [46]. Within
these data, 878 putative HGTs were identified in 186 genomes that can be traced back to 365 dis-
crete acquisitions, leading to a quantification estimate of 0.04–0.06% across this dataset, of which a
majority of the HGTs are associated with metabolism-related Gene Ontology terms [46].

Parasites
Pathogens and parasites live in close association with their hosts, resulting in reciprocal gene sharing
[47]. Many diverse protists are parasitic, some obligate and some facultative, with hosts ranging from
plants to fish to humans. These species have relied on HGT from various sources to better adapt to
the parasitic lifestyle.Blastocystis sp. is an anaerobic parasite that infects humans.When analyzed for
putative HGTs, one isolate (subtype 7) encoded genes most closely related to bacterial donors but
6 Trends in Genetics, Month 2020, Vol. xx, No. xx
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homologous to other anaerobic eukaryotic parasites, suggesting that these genes are transferred
horizontally between eukaryotes [48]. This species also contains HGTs that encode major facilitator
superfamily (MFS) proteins that aid in nutrient absorption fromhost tissues and others for fermentation
that allow it to thrive in anaerobic environments [48,49]. In subtype 1, the patterns of HGT copy num-
ber throughout the Blastocystis lineage may have an effect on virulence [49]. HGT has also been im-
plicated in conferring virulence in a comparative study of ciliate (alveolate) pathogens, in which the
facultative parasite Pseudocohnilembus persalinus and the free-living Tetrahymena thermophila
were compared with the obligate parasite Ichthyophthirius multifiliiswith respect to quantity and qual-
ity of HGTs [50]. The amoebozoan Entamoeba histolytica is another parasite with HGTs that appear
to play a role in its obligately anaerobic lifestyle, as well as enzymes that allow the cell tometabolize a
diversity of amino acids [51]. HGTs in the Trichomonas vaginalis genome encode enzymes such as
cysteine peptidase that may affect virulence [52]. In the plant pathogen Phytomonas sp., HGTs
function in carbohydratemetabolism, including a bacteria-typeα,α-trehalose phosphorylase that al-
lows this organism to use trehalose, a plant disaccharide, as an energy source that likely
supports the parasitic relationship [53]. In trypanosomes, HGTs from bacteria that encode central
metabolic functions are so integral to themachinery of the organism that theymay serve as effective
drug therapy targets [36]. In the fungus-like stramenopiles, the oomycetes, numerous fungus-
derived HGTs have been found in four species in two genera, suggesting that fungal plant patho-
gens likely donated genes that allowed oomycetes to become successful pathogens of plants
[14,54]. These HGTs encode enzymes that break down plant cell walls and acquire nutrients from
the environment, as well as proteins that aid in resisting plant defenses and attacking plant cell
walls [54]. In the microsporidia, fungal obligate intracellular parasites with highly reduced genomes,
HGTs have been implicated in facilitating parasitism [55]. Examples include genes encoding
ATP transporter and H+ symporter functions that are present in all sequenced microsporidia, as
well as genes that provide bacteriocin resistance, reactive oxygen species (ROS) scavenging, UV
protection, and various metabolic functions, many of which likely derive from co-occurring intracel-
lular bacterial donors [55]. Although not exhaustive, the studies highlighted here show a clear trend
toward HGT-driven metabolic enhancement and novel functions leading to increased fitness and
adaptation to a variety of lifestyles across many protist lineages.

HGTs and Major Evolutionary Transitions
Not only is HGT a ubiquitous process implicated in novel adaptations throughout the web of
protist life, but HGT-driven adaptations are also an integral part of major evolutionary transitions.
Two of the most noteworthy in this respect are the origin of primary plastids and the colonization of
land by plants. The primary endosymbiosis of a cyanobacterium by a phagotrophic protist
resulted in the canonical plastid in the ancestor of Archaeplastida [56–58]. This endosymbiotic
event is widely hypothesized to have been aided by the contemporaneous acquisition of dozens of
Chlamydiae-derived genes, many of which encode proteins that are plastid-targeted [59–61].
These proteins that complement the function of the plastid likely assisted in the transition of the cap-
tured cyanobacterium to an organelle and carried out various other vital functions [59–61]. It is pos-
tulated that the chlamydial cell(s) implicated in this relationship were either endoparasites or
endosymbionts in the Archaeplastida host, and their close association made possible these HGTs
(for details, see [60]), although it is important to note that this hypothesis (tripartite model) is still
an area of active investigation and debate [62–64]. Similar types of compensatory functions of
HGTs are also associated with the only other known endosymbiotic event that led to the advent of
a primary plastid. In Paulinella chromatophora, a rhizarian amoeba with a relatively recently (~100
mya) acquired photosynthetic organelle (‘chromatophore’), HGTs compensate for endosymbiont ge-
nome reduction due to Muller’s ratchet. HGTs to the nucleus of P. chromatophora fill metabolic
gaps resulting from the reduced organellar gene inventory, and many of these bacterium-derived
genes have undergone gene family expansion [65,66].
Trends in Genetics, Month 2020, Vol. xx, No. xx 7



Outstanding Questions
How can we more accurately
characterize the extent of HGT in
eukaryotes? What types of data do
we need to generate to have confi-
dence in the results, and what level
of taxonomic sampling will allow us
to distinguish between HGT and
differential loss scenarios?

How does effective population size
impact HGT, and does a smaller
population size allow more HGTs to
be fixed (i.e., not weeded out by
selection)? Can we use protist models
to study HGT in the laboratory by apply-
ing the correct selection pressures?
What sorts of vectors are responsible
for HGT in eukaryotes? Is phagocytosis
a major driver of novel gene origin?

Is it possible to establish and implement
a standardized pipeline for HGT quantifi-
cation in eukaryotic genomes? What
challenges remain to harness genomic
data in a fashion that is consistent
across different journals and interna-
tional borders to create a robust frame-
work for quantifying HGT in eukaryotic
genomes, and do we need to require
evidence based on long-read se-
quencing to accept HGT candidates?

Can we encourage or require future
genome studies to include a putative
HGT determination in their analysis?
Can we push this field forward by cre-
ating a eukaryotic HGT toolkit that is
freely available and, similar to BUSCO
(Benchmarking Universal Single-Copy
Orthologs) for determining genome
completeness, can be used to screen
all novel genomes for cases of foreign
gene acquisition?

With more genome data available and
more standard methodology, will HGT
quantification begin to converge on a
more specific number? Will these
trends reflect the gain or loss of key life-
style features, or will HGTs be found at
some background level, regardless of
lifestyle transitions?
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With regard to plant origin, the Zygnematophyceae, streptophyte algae that are sister to embryo-
phytes (land plants), contain HGTs that predate the split of these lineages and played a major role
in terrestrialization [67]. As more streptophyte genomes have become available, it is clear that the
molecular toolkit for terrestrial adaptation existed in algae prior to embryophyte origin [67,68].
These genes, including microbial terpene-synthase-like genes, PAL, YUC genes, and possibly
GRAS and PYL/PYR/RCAR genes, were likely donated by soil bacteria associated with ancestral
streptophytes. Following diversifying selection, they underwent gene- and genome-level duplica-
tion events and neofunctionalization to result in many of the terrestrial adaptations evident in
extant embryophytes [67]. Similar links between HGT and major evolutionary transitions have
been suggested in the fungi, animal, and plant kingdoms [69–71], all of which are rooted within
protist assemblages.

Extent of HGT in Protist Genomes Based on Available Data
Although generally underrepresented in the literature, a majority of eukaryote diversity is microbial.
Protists comprise a polyphyletic assemblage of many kingdom-level groupings of organisms, and
due to their largely unicellular and asexual nature, they form the bridge between prokaryotes and
more complex eukaryotes, maintaining genomic features and traits of each domain. Thus, focusing
on them with respect to HGT is the logical next step to building on the many prokaryotic HGT
studies and informing future wide-scale studies in morphologically more complex eukaryotes.
With the expansion of whole-genome sequencing projects and increased use of long-read data,
the detection of HGTs has become more reliable [72,73]. Long reads (e.g., 50–100 kbp in length)
physically link HGT and native genes in a single molecule of DNA, thereby avoiding potential issues
with incorporation of contaminant DNA in assemblies derived from short-read data [20]. Figure 1
shows a schematic phylogeny of protist genomes that have been sequenced in which the associ-
atedmanuscript explicitly quantified HGT. These studies were carried out between 2004 and 2019
and thus used different pipelines, programs, and criteria to identify HGTs. Therefore, the data need
to be interpreted with caution because the quantification of HGT was not done in a unified fashion.
As denoted in the figure, some studies included all forms of HGT, whereas others focused on pro-
karyotic donors only, or in the case of the oomycetes, only on fungus-derived HGTs. In addition,
differences in filtering parameters such as level of bootstrap support (e.g., >70%) to identify an
HGT event or taxon sampling could lead to over- or underestimates of this number. Finally, only
the most recent studies represented in this figure used long-read sequencing platforms. Due to
this uncertainty, it is difficult to reach final conclusions about the frequency of HGTs in eukaryote
nuclear genomes.

Reports of HGTs that are distributed throughout the vast eukaryotic tree of life provide an incom-
plete picture of the extent and impacts of this process. These data provide important but limited
insights rather than a comprehensive understanding of howHGTmay have shaped eukaryote evo-
lution. Thus, genome-based studies targeting novel or poorly studied lineages (e.g., Rhodelphis,
Hemimastigophora [74,75]), or so-called orphan lineages (e.g., Telonemia, ‘CRuMs’ [76,77]) are
valuable. These data complement existing HGT studies and confirm the presence and importance
of HGT across many distantly related organisms, thereby disproving the previously held view that
HGT in eukaryotes is rare and tied to endosymbiosis [12,78].

Concluding Remarks
Although hotly disputed when it first rose to prominence, the hypothesis of HGT in eukaryotes, in
particular protists, has been substantiated by multiple high-quality analyses of genomes across
the tree of life. The time is ripe to move beyond the debate ‘if HGT’ to focusing on its adaptive
and evolutionary implications and filling ‘genome gaps’ in the eukaryotic tree of life (see Outstand-
ing Questions). Based on published analyses of HGT, the incidence of these gene transfers varies
8 Trends in Genetics, Month 2020, Vol. xx, No. xx
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from 0.04 to 6.49% among microbial eukaryotes (including yeasts). This estimate is impacted by
methodological biases but also reflects the fact that percentage HGT is based on the gene inven-
tory size that grows and shrinks as lifestyles evolve. In general, HGT is much less prevalent [per-
haps by 80-fold (e.g., 1% vs. 80%)] in eukaryotes than in prokaryotes. Going forward, we
suggest that genome sequencing and analysis methods should be standardized to allow a
meaningful comparison of HGT across all eukaryotes. Ideally, long-read sequencing data
(e.g., [20]) and taxon-rich datasets should be used for phylogenetic analyses, and an explicit
definition of HGT should be applied, such as whether candidates are nested within well-
supported clades (strong evidence) or are sister to them (weaker evidence). Moreover,
phylogeny-independent methods such as protein network analysis [79,80] or alignment-free
methods for increasingly large datasets [81] should be used to corroborate HGT candidates. We
strongly encourage all studies in which a new genome is sequenced and the results are reported
in a genome paper to include a list of putative HGTs so that this often-overlooked fundamental
force of eukaryotic evolution can become part of the mainstream scientific discourse. As it stands,
understanding HGT in the broader context of eukaryotic evolution is a work in progress but a wor-
thy endeavor, considering all of the evolutionary insights it has generated thus far.
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